On Duality Based a Posteriori Error Estimation in Various Norms and Linear Functionals for Les
نویسنده
چکیده
We derive a posteriori error estimates for the filtered velocity field in a LES, in various norms and linear functionals. The aposteriori error estimates take the form of an integral in space-time of a discretization residual and a modeling residual times a dual weight. The discretization residual is directly computable, and the modeling residual is estimated by a scale similarity model. We approximate the dual weight by solving an associated linearized dual problem numerically. Computational examples from transition to turbulence in Couette flow are presented.
منابع مشابه
A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity
A new approach to a posteriori error estimation and adaptive mesh design based on techniques from optimal control is presented for primal-mixed finite element models in elasto-plasticity. This method uses global duality arguments for deriving weighted a posteriori error bounds for arbitrary functionals of the error representing physical quantities of interest. In these estimates local residuals...
متن کاملA posteriori error estimation for variational problems with uniformly convex functionals
The objective of this paper is to introduce a general scheme for deriving a posteriori error estimates by using duality theory of the calculus of variations. We consider variational problems of the form inf v∈V {F (v) +G(Λv)}, where F : V → R is a convex lower semicontinuous functional, G : Y → R is a uniformly convex functional, V and Y are reflexive Banach spaces, and Λ : V → Y is a bounded l...
متن کاملA Posteriori Error Estimation for Discontinuos Galerkin Approximations of Hyperbolic Systems
This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approxima...
متن کاملA Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems
This artic!e considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. _Veighted residual approxim...
متن کاملWeighted L-norm a Posteriori Error Estimation of Fem in Polygons
In this paper, we generalize well-known results for the L2-norm a posteriori error estimation of finite element methods applied to linear elliptic problems in convex polygonal domains to the case where the polygons are nonconvex. An important factor in our analysis is the investigation of a suitable dual problem whose solution, due to the non-convexity of the domain, may exhibit corner singular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004